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Abstract

Many applications involve looking at and comparing trends in data. We will discuss some statistics 
that could be used to assess the similarity or dissimilarity between pairs of cumulative trends. These 
statistics can then be used to study sets of trends – for example, to cluster them or to compare them 
across different groups We will describe one possible approach and illustrate its use in a case study, 
in which we studied the trend over time of COVID-19 in New Jersey (NJ) in the USA. It was found 
that areas close to New York City had significantly different (more rapidly increasing) cumulative 
trends compared to areas further from New York City during the early days of the pandemic, but this 
difference dissipated as the pandemic progressed and spread within New Jersey itself. Overall, the 
method performed well and detected insightful differences.  Various socio-economic factors could have 
influenced the spread of COVID-19 within NJ. It was also found that socio-economic factors which 
could have influenced the spread of COVID-19 within NJ are population, distance to NYC, and percent 
of low-income households. The dynamic nature of these relationships also needs to be studied, perhaps 
using extensions of the methodology discussed here.
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Introduction

Almost all of data analysis is concerned with 
looking for and studying patterns in data. One 
such pattern that is often of interest is a trend. 
A trend can be thought of as follows. Given 
a set of univariate observations, {ai}, a trend 
looks at how smoothly and systematically ai 
shifts with increasing values of i. In particular, 
with time course data, i would be time and we 
would be interested in following how the {ai} 
pattern evolves over time. 

In this paper we will discuss a method to study 
sets of trends. We shall focus on data where 

the {ai} are counts and we are interested in 
comparing and/or classifying cumulative 
trends. A cumulative trend {xi} is defined as 
follows. If ait is the count at t for sample i, xit 
is the sum of all counts up to t: xit = ∑t

k=1aik. We 
will describe several statistics that could be 
used to assess the dissimilarity between such 
monotonic trends and study their performance 
in a simulation.

Note that, while {ai} is arguably a time series, 
there are issues that would make it problematic 
to use conventional time series formulations 
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here to determine clusters or to classify them. 
In the applications of interest here, there 
are multiple series; all of them involve a 
fairly short time period and the data exhibits 
no seasonal or cyclical component. Also, 
even though the series of {ai} counts may 
be autoregressive, the correlation between 
successive elements may not remain fixed 
over time due to multiple reasons. Keeping 
in mind that it is ultimately the dissimilarity 
in the evolution of the counts that matters for 
our purpose here, conventional time series 
methodology will not be applied.

To motivate our approach, we shall give a case 
study involving COVID-19 data in which the 
procedure we describe has been successfully 
applied. 

Materials and Methods  

Given two cumulative trends, x={xi} and 
y={yi}, suppose that we are interested in 
seeing how similar or dissimilar they are. 
There are several different statistics that could 
be used for this purpose as shown in Table 1 
(Shirkhorshidi et al., 2015).

Table 1.
Different distances (statistics) used to measure similar / dissimilar between two trends.

Type of the distance Formula
Euclidean distance  d(x, y) = ∑i (xi – yi)2

Manhattan distance d(x, y) = ∑i |xi – yi|
Maximum distance d(x, y) = Maxi |xi – yi|
Chi-squared distance d(x, y) = ∑i (xi – yi)2/(xi + yi)
Kullback-Leibler divergence d(x, y) = ∑i (xi – yi))log(xi , yi)
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Once dissimilarities between pairs of trends 
have been calculated using one of these 
statistics, they can be analyzed in various 
ways as appropriate to the study objective 

(Johnson and Wichern, 2007).  For instance, 
it is often helpful, when comparing multiple 
trends, to have a visualization that displays 
the similarity-dissimilarity patterns among 
the samples. This can be done using 
multidimensional scaling (MDS). Given 
n trends (xi, i=1, ...n), MDS finds a set of n 
2-dimensiional points {zi} which are such 
that the Euclidean distance zi between Zj  and   
approximates d(xi, xj). Further analyses can be 
done using either the {zi} or the {dij}.

Case study: COVID-19 data

We studied the spread of COVID-19 across 
different geographic regions of New Jersey 
(NJ). NJ is a state located adjacent to New 
York City (NYC) in the USA where there 
is a lot of commuter and commercial traffic 
between NJ and NYC. We conjectured that 
NYC, being a highly populated metropolitan 
hub, would have a considerable influence on 
the spread of COVID-19 around NJ. To study 
this, we grouped the 21 counties of NJ into 
two groups: the 10 counties relatively close in 
commuting distance to NYC were designated 
as Group 1 and the 11 counties relatively 

distant from NYC were designated as Group2.
In particular, we studied the cumulative 
time trends, {xi}, of the counts of confirmed 
COVID-19 cases and COVID-19 related 
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deaths for each of the 21 counties of NJ for 
a period of approximately one and a half 

The COVID-19 pandemic evolved as a series 
of surges interspersed with periods of low 
counts for some months. Different regions 
had surges occurring at different times and 
with different characteristics. Since a surge 
has a pattern like a univariate distribution 
and since the simulation reported in Section 
4 indicated Manhattan distance provided 
a good estimate of the separation between 
profiles that look like mixture distributions, 
we used Manhattan distance to estimate the 
dissimilarities between pairs of trends. Thus, 
we calculated the dissimilarities, Dij, between 
all pairs of counties i and j. 

Dij = d(xi/Pi, yi/Pi),

where Pi is the population of county i. This 
population adjustment was done to take into 
account the differences in county populations. 
Multidimensional scaling was performed 
using these dissimilarities. Figures 2 and 3 
show MDS plots of the data (Figure 2 is for 
cases and Figure 3 is for deaths). We compared 
the counties relatively close in commuting 
distance to NYC (shown in red) to the counties 
relatively distant from NYC (shown in black). 
This was done for data up to Day 60 (plots on 
left) and for all the data (plots on right).

years, from 5 March 2020 to 26 August 2021 
(Figures 1 and 2). 

Figure 1. 
Cumulative time trends, {xi}, of the counts of confirmed cases (on the left) and deaths (on the 
right); each line corresponds to a county.

(Counties close to NYC are in red and counties distant from NYC are in black)
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Figure 2.
MDS plots for the confirmed COVID-19 cases (The plot on the left is for the first 60 days and 
the plot on the right is for all 540 days).

(Counties close to NYC are in red and counties distant from NYC are in black)

Figure 3.
MDS plots for the COVID-19 deaths (The plot on the left is for the first 60 days and the plot 
on the right is for all 540 days).

(Counties close to NYC are in red and counties distant from NYC are in black)

To study the time effect further, we separated the data into 3 six-month time periods: Days 1 
to 180, Days 181 to 360 and Days 361 to 540 and looked at the cumulative time trends of the 
proportions of confirmed cases and deaths for each time period (Figure 4).
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Figure 4.
Cumulative time trends, {xi}, of the proportions of confirmed cases (top row) and deaths 
(bottom row) – from left to right, for days 1 to 180, days 181 to 360, and days 361 to 540. 
Each line corresponds to a separate county. 

(Counties close to NYC are in red and counties distant from NYC are in black)

Table 2.
Hotelling’s and t test p-values for cases and deaths.

Time period
For cases For deaths

Hotelling
p-value

T test
p-value

Hotelling
p-value

T test
p-value

Days 1 to 180 0.0001* 0.0002* 0.0001* 0.0001*
Days 181 to 360 0.5339 0.7823 0.7849 0.8590
Days 361 to 540 0.0508 0.1854 0.1405 0.5830

We then carried out multidimensional 
scaling within each time period and applied 
Hotelling’s test to compare the two groups of 
counties. We also took logs of the counts at 
the end of each time period and performed a 
t test. The results, shown in Table 2, indicate 
a very strong separation between the two 
groups of counties in the first six-month 
period, with significantly higher counts in the 

counties near NYC. However, this separation 
is no longer present in the later time periods, 
although there is perhaps a very slight shift 
again during the last six-month period.  This 
demonstrates the geographic evolution of the 
pandemic over time, with many early cases 
and deaths in NJ arising from its proximity 
to NYC, but with this effect being dampened 
later as infections spread within NJ itself.
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In related work, Amaratunga et al. (2021) 
also investigated whether various socio-
economic factors could have influenced the 
spread of COVID-19 within NJ. They looked 
at factors such as percentage of elders in 
the population, percentage of low-income 
households, the numbers of food and health 
facilities (including fast-food and non-fast-
food restaurants, groceries, nursing homes, 
fitness centers, and pharmacies – these were 
obtained by querying the Yelp Fusion API). 
Since a large proportion of the dissimilarities 
between counties could be accounted for by 
the first eigenvector of MDS (it was larger 
than 0.90 for both cases and deaths), it was 
reasonable to regard the values along this 
eigenvector as carrying the most information 
regarding differences between counties. 
These values were then used as a response 
variable and modeled against the above socio-
economic factors. The model indicated that the 
important factors were population, distance to 
NYC, and percent of low-income households. 
The dynamic nature of these relationships is 
being studied.

Simulation

We carried out a simulation to compare the 
dissimilarity measures outlined in Table 1. 

A set of 1000 observations was generated 
from a normal distribution with mean 7 and 
standard deviation 1. In addition, a set of 1000 
observations was generated from a Mixed 
Normal distribution, in which 90% of the 
observations came from the same distribution 
as above and 10% of the observations came 
from a normal distribution with mean m and 
standard deviation 2. We then computed their 
empirical cumulative distribution functions 

and, based on these, calculated the dissimilarity 
d(m) between these two sets of observations 
using each of the different measures described 
in Section 2. This was repeated 500 times and 
the mean, d(µ) was computed. This was then 
repeated for several different values of m.  

Dissimilarity measures that are better able to 
discern the difference of the Contaminated 
Normal from the Normal will tend to have 
larger values of d. This can be used to 
compare the different measures. Since the 
dissimilarity measures are on different scales, 
the performance of a dissimilarity measure 
was evaluated using a standardized measure:

p(µ) = 
d(µ) - d(0)

SD

where SD is the standard deviation of the 
dissimilarities when m=0. Figure 5 shows a 
plot of separation, P(m) vsshift, m for the five 
dissimilarity measures.

Figure 5.
Performance measure P(m) vs m for the five 
dissimilarity measures. The lines are coded 
as follows: 1 = Euclidean distance, 2 = Man-
hattan distance, 3 = Maximum distance, 4 = 
Chi-squared distance, 5 = Kullback-Leibler 
divergence.
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It can be seen that Manhattan distance most 
clearly captures the differences in cumulative 
trends as m increases.

Conclusions

We studied a method for comparing 
cumulative trends. A key aspect of the method 
is a dissimilarity measure. We compared the 
performance of five measures in a simulation 
and found that Manhattan distance displays 
the best performance in the setting in which 
the simulation was done. 

A case study was also done and showed the 
value of the method. In the case study, we 
studied the trend over time of COVID-19 in 
New Jersey in the USA. It was found that 
areas close to New York city had significantly 
different (more rapidly increasing) cumulative 
trends in both confirmed cases and deaths 
compared to areas further from New York 
City during the early days of the pandemic, 
but this difference dissipated as the pandemic 
progressed and spread within New Jersey 
itself.  Since this type of trend data arises in 
a variety of settings, this methodology is an 
overall useful tool to have.
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